Abstract
Both methylation and brain volume patterns hold important biological information for the development and prognosis of schizophrenia (SZ). A combined study to probe the association between them provides a new perspective to understanding SZ. Genomic methylation of peripheral blood and regional brain volumes derived from magnetic resonance imaging were analyzed using parallel independent component analyses in this study. Nine methylation components and five brain volumetric components were extracted for 94 SZ patients and 106 healthy controls. After controlling for age, sex, race, and substance use, a component comprised primarily of bilateral cerebellar volumes was significantly correlated to a methylation component from 14 CpG sites in 13 genes. Both patients and healthy controls demonstrated similar associations, but patients had significantly smaller cerebellar volumes and dysmethylation in the associated epigenetic component compared to controls. The 13 genes are enriched in cellular growth and proliferation with some genes involved in neuronal growth and cerebellum development (GATA4, ADRA1D, EPHA3, and KCNK10), and these genes are prominently associated with neurological and psychological disorders. Such findings suggest that the methylation pattern of the genes coding for cellular growth may influence the cerebellar development through regulating gene expression, and the alteration in the methylation of these genes in SZ patients may contribute to the cerebellar volume reduction observed in patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.