Abstract

BackgroundAccumulating evidence suggest that compromised CYP2D6 enzyme activity caused by gene mutation could contribute to primaquine failure for the radical cure of vivax malaria. The current study aims to preliminarily reveal the association between the recurrence of vivax malaria in Yunnan Province and CYP2D6 gene mutation by analysing polymorphisms in the entire coding region of human CYP2D6 gene.MethodsBlood samples were collected from patients with vivax malaria, who received "chloroquine and 8-day course of primaquine therapy" in Yunnan Province. The suspected relapsed cases were determined by epidemiological approaches and gene sequence alignment. PCR was conducted to amplify the CYP2D6 gene in the human genome, and the amplified products were then sequenced to compare with the non-mutation “reference” sequence, so as to ensure correct sequencing results and to determine 9 exon regions. Subsequently, the DNA sequences of 9 exons were spliced into the coding DNA sequence (CDS), which, by default, is known as maternal CDS. The paternal CDS was obtained by adjusting the bases according to the sequencing peaks. The mutation loci, haplotypes (star alleles), genotypes and odds ratios (OR) of all the CDSs were analysed.ResultsOf the119 maternal CDS chains in total with 1491 bp in length, 12 mutation sites in the 238 maternal and paternal CDS chains were detected. The c.408G > C mutation was most frequently detected in both suspected relapsed group (SR) and non-relapsed group (NR), reaching 85.2% (75/88) and 76.0% (114/150), respectively. The c.886C > T mutation was most closely related to the recurrence of vivax malaria (OR = 2.167, 95% CI 1.104–4.252, P < 0.05). Among the 23 haplotypes (Hap_1 ~ Hap_23), Hap_3 was non-mutant, and the sequence structure of Hap_9 was the most complicated one. Five star alleles, including *1, *2, *4, *10 and *39, were confirmed by comparison, and CYP2D6*10 allele accounted for the largest percentage (45.4%, 108/238). The frequency of CYP2D6*2 allele in the SR group was significantly higher than that in the NR group (Χ2 = 16.177, P < 0.05). Of the defined 24 genotypes, 8 genotypes, including *4/*4, *4/*o, *2/*39, *39/*m, *39/*x, *1/*r, *1/*n, and *v/*10, were detected only in the SR group.ConclusionMutation of CYP2D6*10 allele accounts for the highest proportion of vivax malaria cases in Yunnan Province. The mutations of c. 886C > T and CYP2D6*2 allele, which correspond to impaired PQ metabolizer phenotype, are most closely related to the relapse of vivax malaria. In addition, the genotype *4/*4 with null CYP2D6 enzyme function was only detected in the SR group. These results reveal the risk of defected CYP2D6 enzyme activity that diminishes the therapeutic effect of primaquine on vivax malaria.

Highlights

  • Accumulating evidence suggest that compromised Cytochrome P450 (CYP2D6) enzyme activity caused by gene mutation could contribute to primaquine failure for the radical cure of vivax malaria

  • Demographics and clinical characteristics of the subjects and polymerase chain reaction (PCR) amplification of human CYP2D6 gene A total of 45 suspected relapsed group (SR) vivax malaria cases were confirmed by epidemiological investigation and gene sequence alignment (Additional file 3), including 43 cases with one suspected relapsed event, 1 case with two suspected relapsed events and 1 case with three suspected relapsed events

  • Exons 1–4 and 5–9 of CYP2D6 gene in the blood samples collected from 45 SR patients and 75 non-relapsed group (NR) patients were amplified by conducting PCR

Read more

Summary

Introduction

Accumulating evidence suggest that compromised CYP2D6 enzyme activity caused by gene mutation could contribute to primaquine failure for the radical cure of vivax malaria. From 2011 to 2018, 50.7% of the imported malaria cases in Yunnan Province were caused by Plasmodium vivax [8]. Tafenoquine and primaquine are recommended by the World Health Organization (WHO) for the treatment of relapsed malaria owing to its efficiency of eradicating the hypnozoites of P. vivax via 5-hydroxy-primaquine (5-hydroxy-primaquine) formed by the enzyme CYP2D6 (Cytochrome P450, family 2, subfamily D, polypeptide 6) in human liver cells [9,10,11,12]. The risk of G6PD deficiency should be identified prior to receiving anti-relapse treatment of vivax malaria, and that the genotype and enzyme activity of CYP2D6 should be tested as well [14, 16, 17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call