Abstract

Simple SummaryStem cell-associated molecular features of solid tumors, collectively known as cancer stemness, are of great importance in the development, progression, and reoccurrence of cancer. Transcriptional and epigenetic dysregulation is significantly associated with cancer stemness. Here, we investigated the association between the Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in solid tumors. We aimed to evaluate the potential value of TIF1 members in predicting a stem-like cancer phenotype. Our results indicate that only TIF1β (also known as Tripartite Motif protein 28, TRIM28) high expression is consequently associated with a “stemness high” phenotype, regardless of the tumor type, resulting in a worse prognosis for cancer patients. The oncogenic signature of TRIM28HIGH tumors significantly reflects the enrichment of “stemness high” cancers with targets for c-Myc (MYC Proto-Oncogene). TRIM28-associated gene expression profiles are also robustly enriched with stemness markers. Our results demonstrate that the association between high TRIM28 expression and an enriched cancer stem cell-like phenotype is a common phenomenon across solid tumors.Cancer progression entails a gradual loss of a differentiated phenotype in parallel with the acquisition of stem cell-like features. Cancer de-differentiation and the acquisition of stemness features are mediated by the transcriptional and epigenetic dysregulation of cancer cells. Here, using publicly available data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and harnessing several bioinformatic tools, we characterized the association between Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in 27 distinct types of solid tumors. We aimed to define the prognostic value for TIF1 members in predicting a stem cell-like cancer phenotype and patient outcome. Our results demonstrate that high expression of only one member of the TIF1 family, namely TIF1β (also known as Tripartite Motif protein 28, TRIM28) is consequently associated with enriched cancer stemness across the tested solid tumor types, resulting in a worse prognosis for cancer patients. TRIM28 is highly expressed in higher grade tumors that exhibit stem cell-like traits. In contrast to other TIF1 members, only TIF1β/TRIM28-associated gene expression profiles were robustly enriched with stemness markers regardless of the tumor type. Our work demonstrates that TIF1 family members exhibit distinct expression patterns in stem cell-like tumors, despite their structural and functional similarity. Among other TIF1 members, only TRIM28 might serve as a marker of cancer stemness features.

Highlights

  • Cancer progression entails a gradual loss of a differentiated phenotype in parallel with the acquisition of stem cell-like features

  • We focused on Tripartite Motif protein 24 TRIM24, TRIM28 (TIF1β), TRIM33 (TIF1γ), and TRIM66 (TIF1δ) proteins that comprise the Transcriptional Intermediary Factor 1 (TIF1) family of chromatin-binding proteins [9,10]

  • Using the cBioportal data, we analyzed the expression of four TIF1 family members, namely TIF1α/TRIM24, TIF1β/TRIM28, TIF1γ/TRIM33, and TIF1δ/TRIM66, across 27 solid tumor types to determine their association with patient survival

Read more

Summary

Introduction

Cancer progression entails a gradual loss of a differentiated phenotype in parallel with the acquisition of stem cell-like features. De-differentiated primary tumors more frequently result in metastatic spread to distant organs, facilitating disease progression and a poor prognosis. These features, collectively known as cancer stemness, were recognized as valuable predictive or prognostic characteristics [3]. The molecular signatures capable of grading cancer stemness represent an essential step in designing novel therapeutic regimens that eventually may target the cancer stem cell population [4,5,6]. Malta et al harnessed publicly available molecular profiles of distinct stem cell populations to quantify tumor stemness [7]. The ESC transcriptional program is frequently activated in diverse human epithelial cancers, suggesting its versatility in acquiring a cancer dedifferentiation phenotype regardless of the tumor type. Reactivation of the ESC-like program in cancer strongly predicts metastatic potential and patient death [5,6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call