Abstract

BackgroundAlzheimer's disease (AD) and Parkinson's disease (PD) are the leading causes of death among the elderly. Recent research has demonstrated that mitochondrial dysfunction, which is hallmark of neurodegenerative diseases, is a contributor to the development of these diseases. Methods and materialsMethylmalonic acid (MMA), AD, PD, inflammatory markers and covariates were extracted from the National Health and Nutrition Examination Survey (NHANES). The classification of the inflammatory markers was done through quartile conversion. A restricted cubic spike function was performed to study their dose-response relationship. MMA subgroups from published studies were used to explore the correlation between different subgroups and cause-specific mortality. Multivariable weighted Cox regression was carried out to investigate MMA and cause-specific mortality in patients with AD and PD. Weighted survival analysis was used to study the survival differences among MMA subgroups. ResultsA non-linear correlation was observed between MMA and AD-specific death and PD-specific mortality. The presence of MMA Q4 was linked to increased death rates among AD patients (HR = 6.39, 95%CI: 1.19–35.24, P = 0.03) after controlling for potential confounders in a multivariable weighted Cox regression model. In PD patients, the MMA Q4 (Q4: HR: 5.51, 95 % CI: 1.26–24, P = 0.02) was also related to increased mortality. The results of survival analysis indicated that the poorer prognoses were observed in AD and PD patients with MMA Q4. ConclusionThe higher level of mitochondria-derived circulating MMA was associated with a higher mortality rate in AD and PD patients. MMA has the potential to be a valuable indicator for evaluating AD and PD patients' prognosis in the clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call