Abstract
BackgroundAlthough several previous studies have assessed the association of fine particulate matter (PM2.5) exposure during pregnancy with preterm birth, the results have been inconsistent and remain controversial. This meta-analysis aims to quantitatively summarize the association between maternal PM2.5 exposure and preterm birth and to further explore the sources of heterogeneity in findings on this association.MethodsWe searched for all studies published before December 2014 on the association between PM2.5 exposure during pregnancy and preterm birth in the MEDLINE, PUBMED and Embase databases as well as the China Biological Medicine and Wanfang databases. A pooled OR for preterm birth in association with each 10 μg/m3 increase in PM2.5 exposure was calculated by a random-effects model (for studies with significant heterogeneity) or a fixed-effects model (for studies without significant heterogeneity).ResultsA total of 18 studies were included in this analysis. The pooled OR for PM2.5 exposure (per 10 μg/m3 increment) during the entire pregnancy on preterm birth was 1.13 (95 % CI = 1.03–1.24) in 13 studies with a significant heterogeneity (Q = 80.51, p < 0.001). The pooled ORs of PM2.5 exposure in the first, second and third trimester were 1.08 (95 % CI = 0.92–1.26), 1.09 (95 % CI = 0.82–1.44) and 1.08 (95 % CI = 0.99–1.17), respectively. The corresponding meta-estimates of PM2.5 effects in studies assessing PM2.5 exposure at individual, semi-individual and regional level were 1.11 (95 % CI = 0.89–1.37), 1.14 (95 % CI = 0.97–1.35) and 1.07 (95 % CI = 0.94–1.23). In addition, significant meta-estimates of PM2.5 exposures were found in retrospective studies (OR = 1.10, 95 % CI = 1.01–1.21), prospective studies (OR = 1.42, 95 % CI = 1.08–1.85), and studies conducted in the USA (OR = 1.16, 95 % CI = 1.05–1.29).ConclusionsMaternal PM2.5 exposure during pregnancy may increase the risk of preterm birth,but significant heterogeneity was found between studies. Exposure assessment methods, study designs and study settings might be important sources of heterogeneity, and should be taken into account in future meta-analyses.Electronic supplementary materialThe online version of this article (doi:10.1186/s12884-015-0738-2) contains supplementary material, which is available to authorized users.
Highlights
Several previous studies have assessed the association of fine particulate matter (PM2.5) exposure during pregnancy with preterm birth, the results have been inconsistent and remain controversial
A total of nine studies were excluded for the following reasons: having a different definition of preterm birth (n = 1) [23], not providing the dose–response relationship between PM2.5 exposure and preterm birth (n = 4) [24,25,26,27], only assessing the sources of PM2.5 (n = 1) [28], and duplication of studies whose primary results had already been included in other studies (n = 3) [29,30,31]
The pooled effects of PM2.5 exposure in different trimesters of pregnancy on preterm birth We estimated a significant increase of preterm birth risk associated with overall PM2.5 exposure during pregnancy across all 13 included studies (OR = 1.13, 95 % confidence intervals (CI) = 1.03–1.24) (Table 2 and Fig. 2)
Summary
Several previous studies have assessed the association of fine particulate matter (PM2.5) exposure during pregnancy with preterm birth, the results have been inconsistent and remain controversial. This meta-analysis aims to quantitatively summarize the association between maternal PM2.5 exposure and preterm birth and to further explore the sources of heterogeneity in findings on this association. In the past several years, more studies have been conducted to estimate the association between maternal PM2.5 exposure and preterm birth, which provides an opportunity to quantitatively explore the sources of heterogeneity between previous studies and meta-analyses
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.