Abstract

Osteoporosis is a common disorder with a strong genetic component. Bone mineral density (BMD), vitamin D, and calcium levels declining are a main contributor of osteoporosis and fragility fractures. This cross-sectional study designed to explore the possible link between CYP2R1 rs10741657 polymorphism and BMD of the total hip, lumbar spine and femoral neck, vitamin D, and calcium in Iranian children and adolescents. 247 children and adolescents (127 girls and 120 boys) between 9 and 18 years old from Kawar (an urban area located 50 km east of Shiraz, the capital city of the Fars province in the south of Iran) were randomly selected based on age-stratified systematic sampling and recruited for genetic analysis. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for genotyping CYP2R1 rs10741657. Anthropometric, biochemical, and bone mineral density (BMD) parameters were also measured. The results specified that in the dominant [P < 0.0001, -2.943 (-4.357-1.529)] and over-dominant [P < 0.0001, 2.789 (1.369-4.209)] models, vitamin D concentration significantly differed between genotypes. The highest vitamin D levels were displayed for participants carrying the rs10741657 AG genotype (16.47 ng/ml). In regard to calcium, in a dominant model [P = 0.012, 0.194 (0.043-0.345)] and over-dominant model [P = 0.008, 0.206 (-0.357-0.055), there was a significant association. AG genotype displayed the highest (9.96 mg/dl) and GG genotype the lowest (9.75 mg/dl) calcium values. This study reported the association of CYP2R1 rs10741657 polymorphisms with calcium and vitamin D levels in Iranian children and adolescents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call