Abstract

IntroductionCentral sensitization plays a pivotal role in maintenance of pain and is believed to be intricately involved in several chronic pain conditions. One clinical manifestation of central sensitization is secondary hyperalgesia. The degree of secondary hyperalgesia presumably reflects individual levels of central sensitization. The objective of this study was to investigate the association between areas of secondary hyperalgesia and volumes of the caudate nuclei and other brain structures involved in pain processing.Materials and methodsWe recruited 121 healthy male participants; 118 were included in the final analysis. All participants underwent whole brain magnetic resonance imaging (MRI). Prior to MRI, all participants underwent pain testing. Secondary hyperalgesia was induced by brief thermal sensitization. Additionally, we recorded heat pain detection thresholds (HPDT), pain during one minute thermal stimulation (p-TS) and results of the Pain Catastrophizing Scale (PCS) and Hospital Anxiety and Depression score (HADS).ResultsWe found no significant associations between the size of the area of secondary hyperalgesia and the volume of the caudate nuclei or of the following structures: primary somatosensory cortex, anterior and mid cingulate cortex, putamen, nucleus accumbens, globus pallidus, insula and the cerebellum. Likewise, we found no significant associations between the volume of the caudate nuclei and HPDTs, p-TS, PCS and HADS.ConclusionsOur findings indicate that the size of the secondary hyperalgesia area is not associated with the volume of brain structures relevant for pain processing, suggesting that the propensity to develop central sensitization, assessed as secondary hyperalgesia, is not correlated to brain structure volume.

Highlights

  • Central sensitization plays a pivotal role in maintenance of pain and is believed to be intricately involved in several chronic pain conditions

  • Our findings indicate that the size of the secondary hyperalgesia area is not associated with the volume of brain structures relevant for pain processing, suggesting that the propensity to develop central sensitization, assessed as secondary hyperalgesia, is not correlated to brain structure volume

  • Nociceptive stimuli can elicit sensitization of neurons in the central pain pathways. This phenomenon of central sensitization is a manifestation of the plasticity in the central nervous system (CNS) and represents the CNS’s ability to alter and produce augmented pain responses by amplification of synaptic inputs and recruitment of subthreshold neurons

Read more

Summary

Introduction

Central sensitization plays a pivotal role in maintenance of pain and is believed to be intricately involved in several chronic pain conditions. One clinical manifestation of central sensitization is secondary hyperalgesia. The degree of secondary hyperalgesia presumably reflects individual levels of central sensitization. The objective of this study was to investigate the association between areas of secondary hyperalgesia and volumes of the caudate nuclei and other brain structures involved in pain processing

Objectives
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.