Abstract

This article presents a numerical study of ventilation performance of balconies using computational fluid dynamics. The pressure coefficients distributed on the opposite walls of a five-storey building model, both with and without balconies, were studied under variation of the wind direction, balcony dimensions and building height. The effect of balconies on the capacity for wind-induced natural ventilation is discussed. The numerical results show good agreement with the experiments of Chand et al. They also indicate that a balcony enhances the cross-ventilation of intermediate floors but weakens that of the ground and top floors, by significantly changing the pressure distribution on the windward wall. Finally, the ventilation performance of a balcony is not greatly affected by variations in its size but is slightly weakened as the height of the building increases. Practical application: This study provides information and guidance in how best to incorporate the use of a balcony in building development at the design stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.