Abstract

Aptamers are single-stranded DNA or RNA that bind to specific targets such as proteins, thus having similar characteristics to antibodies. It can be synthesized at a lower cost, with no batch-to-batch variations, and is easier to modify chemically than antibodies, thus potentially being used as therapeutic and biosensing agents. The current method for RNA aptamer identification in vitro uses the SELEX method, which is considered inefficient due to its complex process. Computational models of aptamers have been used to predict and study the molecular interaction of modified aptamers to improve affinity. In this study, we generated three-dimensional models of five RNA aptamers from their sequence using mFold, RNAComposer web server, and molecular dynamics simulation. The model structures were then evaluated and compared with the experimentally determined structures. This study showed that the combination of mFold, RNAComposer, and molecular dynamics simulation could generate 14-16, 28, or 29 nucleotides length of 3D RNA aptamer with similar geometry and topology to the experimentally determined structures. The non-canonical basepair structure of the aptamer loop was formed through the MD simulation, which also improved the three-dimensional RNA aptamers model. Clustering analysis was recommended to choose the more representative model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.