Abstract
The highly-strained lattice hypothesis in high-entropy alloys (HEAs) has led to an interest in local distortions created in substitutional solid-solution alloys. In this work, the use of total scattering for the assessment and analysis of local lattice strains in alloys is considered. Using two theoretical models, the variation in the width of peaks in the pair distribution function (PDF) with changes in composition, ordering and atomic radius is presented. Key practical considerations for the successful analysis of local lattice strains using this technique are discussed, with particular reference to sample preparation, instrumental and data processing effects. Further, the mitigation of errors in local-strain measurements caused by differences in the scattering length of constituent atoms is presented. This is concluded with a proposed methodology for the analysis of local strains using this technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.