Abstract

The strength of attraction between capsid proteins (CPs) of cowpea chlorotic mottle virus (CCMV) is controlled by the solution pH. Additionally, the strength of attraction between CP and the single-stranded RNA viral genome is controlled by ionic strength. By exploiting these properties, we are able to control and monitor the in vitro co-assembly of CCMV CP and single-stranded RNA as a function of the strength of CP–CP and CP–RNA attractions. Using the techniques of velocity sedimentation and electron microscopy, we find that the successful assembly of nuclease-resistant virus-like particles (VLPs) depends delicately on the strength of CP–CP attraction relative to CP–RNA attraction. If the attractions are too weak, the capsid cannot form; if they are too strong, the assembly suffers from kinetic traps. Separating the process into two steps—by first turning on CP–RNA attraction and then turning on CP–CP attraction—allows for the assembly of well-formed VLPs under a wide range of attraction strengths. These observations establish a protocol for the efficient in vitro assembly of CCMV VLPs and suggest potential strategies that the virus may employ in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.