Abstract
Assembly line balancing problems (ALBP) consist of distributing the total workload for manufacturing any unit of the products to be assembled among the work stations along a manufacturing line as used in the automotive or the electronics industries. Usually, theory assumes that, within each station, tasks can be executed in an arbitrary precedence-feasible sequence without changing station times. In practice, however, the task sequence may influence the station time considerably as sequence-dependent setups (e.g., walking distances, tool changes) have to be considered. Including this aspect leads to a joint balancing and scheduling problem, which we call SUALBSP (setup assembly line balancing and scheduling problem). In this paper, we modify the problem by modeling setups more realistically, give a new, more compact mathematical model formulation and develop effective heuristic solution procedures. Computational experiments based on existing and new data sets indicate that the new procedures outperform formerly proposed heuristics. They are able to solve problem instances of real-world size with small deviations from optimality in computation times short enough to be accepted in real-world decision support systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.