Abstract

We present new measures of the evolving scaling relations between stellar mass, luminosity and rotational velocity for a morphologically inclusive sample of 129 disk-like galaxies with z{sub AB} < 22.5 in the redshift range 0.2 <z < 1.3, based on spectra from DEep Imaging Multi-Object Spectrograph on the Keck II telescope, multi-color Hubble Space Telescope (HST) Advanced Camera for Surveys photometry, and ground-based K{sub s} -band imaging. A unique feature of our survey is the extended spectroscopic integration times, leading to significant improvements in determining characteristic rotational velocities for each galaxy. Rotation curves are reliably traced to the radius where they begin to flatten for {approx}90% of our sample, and we model the HST-resolved bulge and disk components in order to accurately de-project our measured velocities, accounting for seeing and dispersion. We demonstrate the merit of these advances by recovering an intrinsic scatter on the stellar mass Tully-Fisher relation a factor of two to three less than in previous studies at intermediate redshift and comparable to that of locally determined relations. With our increased precision, we find that the relation is well established by (z) {approx} 1, with no significant evolution to (z) {approx} 0.3, {Delta}M{sub *} {approx} 0.04 {+-}more » 0.07 dex. A clearer trend of evolution is seen in the B-band Tully-Fisher relation corresponding to a decline in luminosity of {Delta}M{sub B} {approx} 0.85 {+-} 0.28 magnitudes at fixed velocity over the same redshift range, reflecting the changes in star formation over this period. As an illustration of the opportunities possible when gas masses are available for a sample such as ours, we show how our dynamical and stellar mass data can be used to evaluate the likely contributions of baryons and dark matter to the assembly history of spiral galaxies.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.