Abstract

An ultra-high resolution space target detector is essential for the exploration of the outer space of the Earth. The development of high-resolution space target detection system has become the key. All the indicators of the lens designed by ZEMAX can meet the design requirements and meet the imaging quality. However, whether the actual image quality of the assembled machine can meet the image quality requirements of the design often depends on the eccentricity level of the later adjustment, and the eccentricity affects the consistency of the optical axis, resulting in an asymmetrical aberration of the off-axis field of view. The image quality is degraded. However, when the optical system is eccentrically adjusted, the eccentricity of the system needs to be reflected by the underlying lens and amplified continuously, which is not conducive to the analysis of the system eccentricity error. A reasonable set of adjustment methods can improve the overall performance of the ultra-high resolution optical system. During the assembly of the lens group, the center deviation of each mirror surface above the mirror surface will affect the center deviation measurement difference of the mirror surface to be tested. In this paper, based on the reflection center deviation detector, the lens assembly eccentricity model is established, and the vertical axis magnification of the optical system composed of all the mirrors above the mirror surface and the optical system imaging of all the mirror surfaces above the mirror surface are analyzed. After the ball. According to the lens assembly eccentricity model theory, the existing high-resolution spaceborne camera is used to carry out the adjustment analysis, and the adjusted system eccentricity error meets the design requirements, and the MTF at the 110 pm/mm field after the adjustment is measured. The value is 0.35, and the MTF of the 0.6 field of view at 110 lp/mm is 0.3, which basically reaches the theoretical value of the design. The overall assembly adjustment effect is good, which provides a basis for the design and implementation of the optical system's adjustment scheme, and realizes the 25 million-pixel high-resolution imaging of the optical system. This lens assembly eccentricity model effectively controls the optical system eccentricity and improves the optics. The efficiency of the adjustment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.