Abstract
Introduction: Worldwide, breast cancer is the most common cancer in women and is the main cause of death among all neoplasia in this group. Luminal A breast cancer represents approximately 70% of all breast cancers and is treated with hormone therapies targeting estrogen receptor alpha (ERα). Unfortunately, patients develop drug resistance leading to recurrence of neoplasia due to estrogen-independent ERα reactivation. Therefore, it is crucial to identify new molecular targets downstream ERα signaling pathway that allows the implementation of better treatments to improve the outcome of breast cancer patients. Overexpression of c-Fos, an ERα gene target, has been associated with increased cell motility, malignancy, metastasis, and invasion while its neutralization results in decreased breast cancer tumorigenesis. The aryl hydrocarbon receptor (AHR) ligands halogenated and polycyclic aromatic hydrocarbons, highly toxic compounds, down regulate c-Fos and ERα levels. The present study aimed to evaluate whether 6-formylindolo(3,2-b)carbazole (FICZ), a no toxic AHR agonist, modifies c-Fos levels in MCF-7 mammary carcinoma cells as well as to determine its effects on cell proliferation and migration. In addition, the possible mechanism through which FICZ mediates c-Fos levels in MCF-7 cells was investigated. Methods: Initially, the effect of FICZ on c-Fos mRNA and protein levels in MCF-7 cells, untreated or treated with estradiol, was evaluated by qPCR and Western blot. 2,3,7,8-Tetrachloro-dibenzo-p-dioxin, an AHR prototype agonist, was used as a positive control. Next, we examined the effect of FICZ on MCF-7 cell proliferation and migration by cell counting, MTT, 3H-thymidine incorporation, and scratch-wound assays. Finally, the involvement of proteasome 26S on ERα and c-Fos protein degradation was investigated by the use of MG132 and Western blot. Results: The data show that FICZ treatment downregulates c-Fos mRNA and protein levels, most likely by promoting ERα proteasome degradation, blocking MCF-7 cell proliferation and migration. The results also demonstrate that liganded ERα was required for FICZ-mediated ERα degradation. Conclusions: Activation of AHR results in a decreased MCF-7 cell proliferation and migration by ERα and c-Fos down regulation. Targeting AHR might be a promising therapy for breast cancer treatment, particularly when estrogen-independent ERα reactivation presents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.