Abstract
In this paper, we investigate properties of the Artin monoid Cayley graph. This is the Cayley graph of an Artin group A_{\Gamma} with respect to the (infinite) generating set given by the associated Artin monoid A^+_{\Gamma} . In a previous paper, the first three authors introduced a monoid Deligne complex and showed that this complex is contractible for all Artin groups. In this paper, we show that the Artin monoid Cayley graph is quasi-isometric to a modification of the Deligne complex for A_{\Gamma} obtained by coning off translates of the monoid Deligne complex. We then address the question of when the monoid Cayley graph has infinite diameter. We conjecture that this holds for all Artin groups of infinite type. We give a set of criteria that imply infinite diameter, and using existing solutions to the word problem for large type Artin groups and 3-free Artin groups, we prove that the conjecture holds for any Artin group containing a 3-generator subgroup of one of these two types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.