Abstract
Data Science is associated with new discoveries, the discovery of value from the data. It is a practice of deriving insights and developing business strategies through transformation of data in to useful information. It has been evaluated as a scientific field and research evolution in disciplines like statistics, computing science, intelligence science, and practical transformation in the domains like science, engineering, public sector, business and lifestyle. The field encompasses the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation. In this paper we entitled epicycles of analysis, formal modeling, from data analysis to data science, data analytics -A keystone of data science, The Big data is not a single technology but an amalgamation of old and new technologies that assistance companies gain actionable awareness. The big data is vital because it manages, store and manipulates large amount of data at the desirable speed and time. Big data addresses detached requirements, in other words the amalgamate of multiple un-associated datasets, processing of large amounts of amorphous data and harvesting of unseen information in a time-sensitive generation.
 As businesses struggle to stay up with changing market requirements, some companies are finding creative ways to use Big Data to their growing business needs and increasingly complex problems. As organizations evolve their processes and see the opportunities that Big Data can provide, they struggle to beyond traditional Business Intelligence activities, like using data to populate reports and dashboards, and move toward Data Science- driven projects that plan to answer more open-ended and sophisticated questions.
 Although some organizations are fortunate to have data scientists, most are not, because there is a growing talent gap that makes finding and hiring data scientists in a timely manner is difficult. This paper, aimed to demonstrate a close view about Data science, big data, including big data concepts like data storage, data processing, and data analysis of these technological developments, we also provide brief description about big data analytics and its characteristics , data structures, data analytics life cycle, emphasizes critical points on these issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.