Abstract

Autosomal recessive spastic ataxia of Charlevoix-Saguenay is a fatal brain disorder featuring cerebellar neurodegeneration leading to spasticity and ataxia. This disease is caused by mutations in the SACS gene that encodes sacsin, a massive 4579-amino acid protein with multiple modular domains. However, molecular details of the function of sacsin are not clear. Here, using live cell imaging and biochemistry, we demonstrate that sacsin binds to microtubules and regulates microtubule dynamics. Loss of sacsin function in various cell types, including knockdown and KO primary neurons and patient fibroblasts, leads to alterations in lysosomal transport, positioning, function, and reformation following autophagy. Each of these phenotypic changes is consistent with altered microtubule dynamics. We further show the effects of sacsin are mediated at least in part through interactions with JIP3, an adapter for microtubule motors. These data reveal a new function for sacsin that explains its previously reported roles and phenotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call