Abstract

Open quantum systems are often represented by non-Hermitian effective Hamiltonians that have complex eigenvalues associated with resonances. In previous work we showed that the evolution of tight-binding open systems can be represented by an explicitly time-reversal symmetric expansion involving all the discrete eigenstates of the effective Hamiltonian. These eigenstates include complex-conjugate pairs of resonant and anti-resonant states. An initially time-reversal-symmetric state contains equal contributions from the resonant and anti-resonant states. Here we show that as the state evolves in time, the symmetry between the resonant and anti-resonant states is automatically broken, with resonant states becoming dominant for and anti-resonant states becoming dominant for . Further, we show that there is a time-scale for this symmetry-breaking, which we associate with the ‘Zeno time’. We also compare the time-reversal symmetric expansion with an asymmetric expansion used previously by several researchers. We show how the present time-reversal symmetric expansion bypasses the non-Hilbert nature of the resonant and anti-resonant states, which previously introduced exponential divergences into the asymmetric expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call