Abstract

There is a mounting evidence that our universe is propelled into an accelerated expansion driven by Dark Energy. The simplest form of Dark Energy is a cosmological constant Λ, which is woven into the fabric of spacetime. For this reason it is often referred to as vacuum energy. It has the “strange” property of maintaining a constant energy density despite the expanding volume of the universe. Universes whose energy ismade of Λ posses an event horizon with and eternally finite constant temperature and entropy, and are known as DeSitter geometries. Since the entropy of DeSitter spaces remains a finite constant, then the meaning of a thermodynamic arrow of time becomes unclear. Here we explore the consequences of a fundamental cosmological constant Λ for our universe. We show that when the gravitational entropy of a pure DeSitter state ultimately dominates over the matter entropy, then the thermodynamic arrow of time in our universe may reverse in scales of order a Hubble time. We find that due to the dynamics of gravity and entanglement with other domain, a finite size system such as a DeSitter patch with horizon size H 0 -1 has a finite lifetime ∆t. This phenomenon arises from the dynamic gravitational instabilities that develop during a DeSitter epoch and turn catastrophic. A reversed arrow of time is in disagreementwith observations. Thus we explore the possibilities that: Nature may not favor a fundamental Λ, or else general relativity may be modified in the infrared regime when Λ dominates the expansion of the Universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call