Abstract
A systematic investigation of the aromatic features of the electronic structures of a family of recently synthesized osmapentalene derivatives has been carried by means of indices derived from the calculated one-electron density matrix of the corresponding geometry optimized compounds, and complemented by the analysis of the valence molecular orbitals and the delocalized bonding units emerging from the adaptive natural density partitioning method. The calculated delocalization indices between consecutive atom pairs, and normalized multicenter indices are very suggestive of the aromatic character of the equatorial fused carbon rings (except triangular ones) for all the members of the family. Since the electron-delocalization based indices allow precise quantification of the aromaticity, differences of the aromatic character among the various members have also been highlighted, and have been found to be consistent with the magnetic based criteria indices reported earlier. Finally, the valence molecular orbitals along with the delocalized bonding units of the adaptive natural density partitioning indicate that the aromaticity of these compounds is sustained by either 10 or 14 π electrons, which satisfy the Hückel aromatic electron counting rule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.