Abstract
Matrices with a skew-symmetric part of low rank arise in many applications, including path following methods and integral equations. This paper explores the properties of the Arnoldi process when applied to such a matrix. We show that an orthogonal Krylov subspace basis can be generated with short recursion formulas and that the Hessenberg matrix generated by the Arnoldi process has a structure, which makes it possible to derive a progressive GMRES method. Eigenvalue computation is also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.