Abstract
In this article, we study the Hamiltonian dynamics on singular symplectic manifolds and prove the Arnold conjecture for a large class of bm\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$b^m$$\\end{document}-symplectic manifolds. Novel techniques are introduced to associate smooth symplectic forms to the original singular symplectic structure, under some mild conditions. These techniques yield the validity of the Arnold conjecture for singular symplectic manifolds across multiple scenarios. More precisely, we prove a lower bound on the number of 1-periodic Hamiltonian orbits for b2m\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$b^{2m}$$\\end{document}-symplectic manifolds depending only on the topology of the manifold. Moreover, for bm\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$b^m$$\\end{document}-symplectic surfaces, we improve the lower bound depending on the topology of the pair (M, Z). We then venture into the study of Floer homology to this singular realm and we conclude with a list of open questions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.