Abstract

In this paper we introduce the local Nori fundamental group scheme of a reduced scheme or algebraic stack over a perfect field k k . We give particular attention to the case of fields: to any field extension K / k K/k we attach a pro-local group scheme over k k . We show how this group has many analogies, but also some crucial differences, with the absolute Galois group. We propose two conjectures, analogous to the classical Neukirch-Uchida Theorem and Abhyankar Conjecture, providing some evidence in their favor. Finally we show that the local fundamental group of a normal variety is a quotient of the local fundamental group of an open, of its generic point (as it happens for the étale fundamental group) and even of any smooth neighborhood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.