Abstract

Linear wave solutions to the Charney--Hasegawa--Mima equation with periodic boundary conditions have two physical interpretations: Rossby (atmospheric) waves, and drift (plasma) waves in a tokamak. These waves display resonance in triads. In the case of infinite Rossby deformation radius, the set of resonant triads may be described as the set of integer solutions to a particular homogeneous Diophantine equation, or as the set of rational points on a projective surface $X$. The set of all resonant triads was found by Bustamante and Hayat (2013) via mapping to quadratic forms. Our work independently finds all resonant triads via a rational parametrization of $X$. We provide a fiberwise description of $X$ as a rational singular elliptic surface, yielding many new results about the set of wavevectors belonging to resonant triads. In particular, we show there is an infinite number of resonant triads (with relatively prime wavevectors) containing a wavevector $(a,b)$ with $a/b=r$, where $r$ is any given rationa...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.