Abstract

Post-translational modifications of proteins are important for the regulation of cell functions; one of these modifications is post-translational arginylation. In the present study, we show that cytoplasmic CRT (calreticulin) is arginylated by ATE1 (arginyl-tRNA protein transferase). We also show that a pool of CRT undergoes retrotranslocation from the ER (endoplasmic reticulum) to the cytosol, because in CRT-knockout cells transfected with full-length CRT (that has the signal peptide), cytoplasmic CRT appears as a consequence of its expression and processing in the ER. After the cleavage of the signal peptide, an N-terminal arginylatable residue is revealed prior to retrotranslocation to the cytoplasm where arginylation takes place. SGs (stress granules) from ATE1-knockout cells do not contain CRT, indicating that CRT arginylation is required for its association to SGs. Furthermore, R-CRT (arginylated CRT) in the cytoplasm associates with SGs in cells treated with several stressors that lead to a reduction of intracellular Ca2+ levels. However, in the presence of stressors that do not affect Ca2+ levels, R-CRT is not recruited to these loci despite the fact that SGs are formed, demonstrating Ca2+-dependent R-CRT association to SGs. We conclude that post-translational arginylation of retrotranslocated CRT, together with the decrease in intracellular Ca2+, promotes the association of CRT to SGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.