Abstract

The DNA helicase encoded by gene 4 of bacteriophage T7 couples DNA unwinding to the hydrolysis of dTTP. The loss of coupling in the presence of orthovanadate (Vi) suggests that the gamma-phosphate of dTTP plays an important role in this mechanism. The crystal structure of the hexameric helicase shows Arg-522, located at the subunit interface, positioned to interact with the gamma-phosphate of bound nucleoside 5' triphosphate. In this respect, it is analogous to arginine fingers found in other nucleotide-hydrolyzing enzymes. When Arg-522 is replaced with alanine (gp4-R522A) or lysine (gp4-R522K), the rate of dTTP hydrolysis is significantly decreased. dTTPase activity of the altered proteins is not inhibited by Vi, suggesting the loss of an interaction between Vi and gene 4 protein. gp4-R522A cannot unwind DNA, whereas gp4-R522K does so, proportionate to its dTTPase activity. However, gp4-R522K cannot stimulate T7 polymerase activity on double-stranded DNA. These findings support the involvement of the Arg-522 residue in the energy coupling mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call