Abstract

Learning-support system is an umbrella term that we use for digital resources that assign students with mathematical questions and give automatic feedback on the inserted answers. Transitioning between questions and feedback is characteristic to students’ work with such systems. We apply the commognitive framework to explore the role of within-system transitions in students’ mathematics learning, with a special interest in what we term as “reroutinization”—a process of repeated development of conventional routines to be implemented in already familiar mathematical tasks. The study revolves around a digital module in integral calculus, which was designed to support undergraduates with finding areas enclosed by functions. The data comes from dyads and triads of first-year university students, who collaboratively interacted with the module. The analyses cast light on how transitioning within the module aided students to review familiar routines, amend them, confirm, and solidify the amendments. The transition process was not always linear and contained instances of students cycling back and forth between the assigned questions and feedback messages. We conclude with the discussion on the module’s design that afforded reroutinization and suggest paths for further research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.