Abstract
Postnatal development of mammalian cardiomyocytes in the working myocardium is characterized by a near-complete translocation of both kinds of adhering junctions (AJs), i.e. desmosomes and fasciae adhaerentes (FAs), to the polar intercalated disk (ID) regions where they cluster, fuse and molecularly amalgamate to extended hybrid intercellular junction structures, the area composita (composite junction; AC). Using immunofluorescence and immunoelectron microscopy we now report that the AJ structures of the conduction system, in particular those of the Purkinje fiber cells of cows and sheep are fundamentally different. Here the numerous AJs remain in lateral connections with other conductive cells. Desmosomal or desmosome-like junctions can still be distinguished from FA junctions, and a third type of AJs can be identified which shows colocalization of desmosomal and FA proteins, i.e. an AC character. These results, together with demonstrations of other cell type cytoskeletal markers such as α-cardiac actin and desmin, support the concept that conductive cells are derived from embryonal cardiomyocytes and are arrested at an early stage of differentiation. We also show that the conductive cells have extended plasma membrane regions characterized by an exceptionally high proportion of junctions with desmosomal character and proteins, amounting to 50% and more, resulting in the highest desmosome protein packing so far described in non-epithelial cells. The relevance of these junctions for the formation, maintenance and functions of the conductive system is discussed, together with the conclusion that the desmosome-rich regions of conductive cells are among the most vulnerable sites for functional disorders caused by desmosomal protein mutations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.