Abstract

To influence energy homeostasis and reproduction, 17β-estradiol (E2) controls the arcuate nucleus (ARC) through multiple receptor-mediated mechanisms, but primarily via estrogen receptor (ER) α, which signals through both estrogen response element (ERE)-dependent and -independent mechanisms. To determine ERα-mediated, ERE-dependent, and ERE-independent E2 signaling in the ARC, we examined the differential regulation of the mouse arcuate transcriptome by E2 using three mice genotypes: (1) wild-type, (2) ERα knock-in/knockout (ERE-independent mechanisms), and (3) total ERα knockout (ERα-independent mechanisms). Females were ovariectomized and injected with oil or E2, and RNA sequencing on the ARC was used to identify E2-regulated genes in each genotype. Our results show that E2 regulates numerous genes involved in cell signaling, cytoskeleton structure, inflammation, neurotransmission, neuropeptide production, and transcription. Furthermore, ERE-independent signaling regulates ARC genes expressed in kisspeptin neurons and transcription factors that control the hypothalamic/pituitary/gonadal axis. Interestingly, a few genes involved in mitochondrial oxidative respiration were regulated by E2 through ERα-independent signaling. A comparison within oil- and E2-treated females across the three genotypes suggests that genes involved in cell growth and proliferation, extracellular matrices, neuropeptides, receptors, and transcription are differentially expressed across the genotypes. Comparing with previously published chromatin immunoprecipitation sequencing analysis, we found that ERE-independent regulation in the ARC is mainly mediated by tethering of ERα, which is consistent with previous findings. We conclude that the mouse arcuate estrogen-regulated transcriptome is regulated by multiple receptor-mediated mechanisms to modulate the central control of energy homeostasis and reproduction, including novel E2-responsive pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.