Abstract

Shortwave cloud radiative effect (SWCRE), known as the cooling effect triggered by cloud, plays a vital role in adjusting the global radiation budget. As the Arctic gets warmer, it may become a more indispensable factor curbing this warming tendency. Research has pointed out a significant relationship between sea ice cover (SIC) and SWCRE over the Arctic during summer (June–August). Although no evidence has been found on cloud response to SIC during summer on the average of the Arctic, this study regards cloud as an inter-connection which can regulate SIC and SWCRE in a particular place: Barents and Kara Sea region (15°E–85°E, 70°N–80°N). Its SWCRE and SIC vary significantly, with their trends being 5.85 w∙m−2 and − 5.87% per decade compared to those of the Arctic mean (2.93 w∙m−2 and − 4.65% per decade). In this area, we find that the growing number of low-level cloud which is resulted from the loss on SIC may be accountable for the increase in SWCRE, as is shown in the correlation coefficient between low-level cloud and SIC reaches − 0.4. The correlation coefficient between low-level cloud and SWCRE is 0.6. It reflects a SIC-cloud-SWCRE negative feedback. Moreover, a regression fitting model is being established to quantify the contribution of Arctic cloud in the process of slowing down the Arctic warming. It reveals that this specific region would turn into an ice-free region with sea surface temperature (SST) 1.5 °C higher than reality during 2001 if we stop the increase in SWCRE. This result presents how fascinating the contribution cloud has been making in its way slowing down the warming pace.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call