Abstract

The three-dimensional organization of the canal system in two sponge species, Petrosia ficiformis and Chondrosia reniformis, was studied using corrosion casts. Casts were made of live animals, in situ, and canal replicas were analzyed by scanning electron microscopy (SEM). In P. ficiformis the incurrent system consists of a superficial canal network giving rise to large radial canals, which ramify and anastomosize forming an internal web. Excurrent canals are arranged into modular ramified systems radiating from atrial cavities opening to the exterior. Main excurrent canals run at various depths within the sponge, even through the superficial incurrent network. Both incurrent and excurrent canal replicas show smooth, blind-ending capillaries. Some large incurrent canals merge with excurrent ones, thus bypassing choanocyte chambers. In C. reniformis there is a cortical collagen layer crossed by three-like incurrent canals, the “twigs” of which communicate with groups of inhalant pores. The stems of tree-like canals penetrate into the sponge medulla where they ramify and anastomosize to form a web. Main excurrent canals arise from large cloacal ducts leading to the oscular openings. They give rise to a sequence of branches intersecting the incurrent web. Both incurrent and excurrent canals have sharp, blind-ending capillaries. Morphometric data functions show that diameter scaling in canal branches is exponential in Petrosia and linear in Chondrosia. Structural differences and homologies between the two species are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.