Abstract

Given the disposability of somatic tissue, selection can favor a higher mutation rate in the early segregating soma than in germline, as seen in some animals. Although in plants intra-organismic mutation rate heterogeneity is poorly resolved, the same selectionist logic can predict a lower rate in shoot than in root and in longer-lived terminal tissues (e.g., leaves) than in ontogenetically similar short-lived ones (e.g., petals), and that mutation rate heterogeneity should be deterministic with no significant differences between biological replicates. To address these expectations, we sequenced 754 genomes from various tissues of eight plant species. Consistent with a selectionist model, the rate of mutation accumulation per unit time in shoot apical meristem is lower than that in root apical tissues in perennials, in which a high proportion of mutations in shoots are themselves transmissible, but not in annuals, in which somatic mutations tend not to be transmissible. Similarly, the number of mutations accumulated in leaves is commonly lower than that within a petal of the same plant, and there is no more heterogeneity in accumulation rates between replicate branches than expected by chance. High mutation accumulation in runners of strawberry is, we argue, the exception that proves the rule, as mutation transmission patterns indicate that runner has a restricted germline. However, we also find that in vitro callus tissue has a higher mutation rate (per unit time) than the wild-grown comparator, suggesting nonadaptive mutational “fragility”. As mutational fragility does not obviously explain why the shoot—root difference varies with plant longevity, we conclude that some mutation rate variation between tissues is consistent with selectionist theory but that a mechanistic null of mutational fragility should be considered.

Highlights

  • In some animals, the germline is segregated early in development, thereby preventing many mutations from being transmitted to progeny [1]

  • Consistent with an adaptive model, we find that roots commonly have higher mutation rates than shoots in perennials but not in an annual, petals have higher rates than leaves, and variation is between tissues rather than between biological replicates

  • Within-plant mutation rate variation likely to be transmissible to a subsequent generation if they occur in shoot

Read more

Summary

Introduction

The germline is segregated early in development, thereby preventing many (i.e., somatic) mutations from being transmitted to progeny [1]. Classical theory of senescence posits that organisms have no vested interest in keeping the somatic mutation rate under control after the age of reproduction [2]. The same logic predicts that, given the reduced temporal longevity of any mutation, the shorter lived the organism, the higher the somatic mutation rate could be [3]. A higher somatic rate in mouse than human [4], for example, is consistent with such expectations. As the future potential longevity of new germline mutations is longer than that of somatic ones, special protection for the germline from mutation can sometimes be expected. For example, there is an unusually low per-cell-division mutation rate in the male germline [5]. Somatic rates are typically reported to be higher than germline rates [4,6,7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call