Abstract

Human lactoferrin (hLf) is an innate host defense protein that inhibits microbial H+-ATPases. This protein includes an ancestral structural motif (i.e., γ-core motif) intimately associated with the antimicrobial activity of many natural Cys-rich peptides. Peptides containing a complete γ-core motif from hLf or other phylogenetically diverse antimicrobial peptides (i.e., afnA, SolyC, PA1b, PvD1, thanatin) showed microbicidal activity with similar features to those previously reported for hLf and defensins. Common mechanistic characteristics included (1) cell death independent of plasma membrane (PM) lysis, (2) loss of intracellular K+ (mediated by Tok1p K+ channels in yeast), (3) inhibition of microbicidal activity by high extracellular K+, (4) influence of cellular respiration on microbicidal activity, (5) involvement of mitochondrial ATP synthase in yeast cell death processes, and (6) increment of intracellular ATP. Similar features were also observed with the BM2 peptide, a fungal PM H+-ATPase inhibitor. Collectively, these findings suggest host defense peptides containing a homologous γ-core motif inhibit PM H+-ATPases. Based on this discovery, we propose that the γ-core motif is an archetypal effector involved in the inhibition of PM H+-ATPases across kingdoms of life and contributes to the in vitro microbicidal activity of Cys-rich antimicrobial peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.