Abstract

Archaea make glutaminyl-tRNA (Gln-tRNAGln) in a two-step process; a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) forms Glu-tRNAGln, while the heterodimeric amidotransferase GatDE converts this mischarged tRNA to Gln-tRNAGln. Many prokaryotes synthesize asparaginyl-tRNA (Asn-tRNAAsn) in a similar manner using a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) and the heterotrimeric amidotransferase GatCAB. The transamidosome, a complex of tRNA synthetase, amidotransferase and tRNA, was first described for the latter system in Thermus thermophilus [Bailly, M., Blaise, M., Lorber, B., Becker, H.D. and Kern, D. (2007) The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. Mol. Cell, 28, 228–239.]. Here, we show a similar complex for Gln-tRNAGln formation in Methanothermobacter thermautotrophicus that allows the mischarged Glu-tRNAGln made by the tRNA synthetase to be channeled to the amidotransferase. The association of archaeal ND-GluRS with GatDE (KD = 100 ± 22 nM) sequesters the tRNA synthetase for Gln-tRNAGln formation, with GatDE reducing the affinity of ND-GluRS for tRNAGlu by at least 13-fold. Unlike the T. thermophilus transamidosome, the archaeal complex does not require tRNA for its formation, is not stable through product (Gln-tRNAGln) formation, and has no major effect on the kinetics of tRNAGln glutamylation nor transamidation. The differences between the two transamidosomes may be a consequence of the fact that ND-GluRS is a class I aminoacyl-tRNA synthetase, while ND-AspRS belongs to the class II family.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call