Abstract

The thermoacidophilic archaeon Sulfolobus acidocaldarius expresses a very unusual quinol oxidase, which contains four heme a redox centers and one copper atom. The enzyme was solubilized with dodecyl maltoside and purified to homogeneity by a combination of hydrophobic interaction and anion exchange chromatography. The oxidase complex consists of four polypeptide subunits with apparent molecular masses of 64, 39, 27, and 14 kDa that are encoded by the soxABCD operon (Lübben, M., Kolmerer, B., and Saraste, M. (1992) EMBO J. 11, 805-812). The optical spectra and redox potentials of the SoxABCD complex have been characterized, and the absorption coefficients of the contributing cytochromes a587 and aa3 were determined. The EPR spectra indicate the presence of three low spin and one high spin heme species, the latter associated with the binuclear heme CuB site. Standard midpoint potentials of the cytochrome a587 heme centers were determined as +210 and +270 mV, respectively. The maximum turnover of the complex (1300 s-1 at 65 degrees C) was found to be about three times greater than that of the previously studied isolated cytochrome aa3 subunit alone (Gleissner, M., Elferink, M. G., Driessen, A. J., Konings, W. N., Anemüller, S., and Schäfer, G. (1994) Eur. J. Biochem. 224, 983-990). With N,N,N',N'-tetramethyl-1,4-phenylenediamine as a reductant, the SoxABCD complex reconstituted into liposomes generates a proton motive force. A new method is described by co-reconstitution of SoxABCD with a Sulfolobus Rieske FeS-protein (SoxL), allowing energization by cytochrome c. It is based on the finding that this Rieske protein can equilibrate electrons between cytochrome c and quinones reversibly (Schmidt, C. L., Anemüller, S., Teixeira, M., and Schäfer, G. (1995) FEBS Lett. 359, 239-243). With this system, generating no scalar protons, the stoichiometry of proton translocation could be determined. A net H+/e- ratio >1 was determined, identifying the SoxABCD complex as a proton-pumping quinol oxidase. According to structural analysis, the cytochrome aa3 moiety of the complex does not contain the signature of a H+ pumping channel as identified in Rhodobacter sphaeroides or Paracoccus denitrificans. Therefore, for H+ translocation, a mechanism different from that in typical heme-copper oxidases of the aa3 or bo3 type is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.