Abstract
AbstractSeymour conjectured that every oriented simple graph contains a vertex whose second neighborhood is at least as large as its first. Seymour's conjecture has been verified in several special cases, most notably for tournaments by Fisher . One extension of the conjecture that has been used by several researchers is to consider vertex‐weighted digraphs. In this article we introduce a version of the conjecture for arc‐weighted digraphs. We prove the conjecture in the special case of arc‐weighted tournaments, strengthening Fisher's theorem. Our proof does not rely on Fisher's result, and thus can be seen as an alternate proof of said theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.