Abstract

In plants as in other eukaryotes, the structural maintenance of chromosome (SMC) protein complexes cohesin, condensin and SMC5/6 are essential for sister chromatid cohesion, chromosome condensation, DNA repair and recombination. The presence of paralogous genes for various components of the different SMC complexes suggests the diversification of their biological functions during the evolution of higher plants. In Arabidopsis thaliana, we identified two candidate genes (Cap-D2 and Cap-D3) which may express conserved proteins presumably associated with condensin. In silico analyses using public databases suggest that both genes are controlled by factors acting in a cell cycle-dependent manner. Cap-D2 is essential because homozygous T-DNA insertion mutants were not viable. The heterozygous mutant showed wild-type growth habit but reduced fertility. For Cap-D3, we selected two homozygous mutants expressing truncated transcripts which are obviously not fully functional. Both mutants show reduced pollen fertility and seed set (one of them also reduced plant vigour), a lower chromatin density and frequent (peri)centromere association in interphase nuclei. Sister chromatid cohesion was impaired compared to wild-type in the cap-D3 mutants but not in the heterozygous cap-D2 mutant. At superresolution (Structured Illumination Microscopy), we found no alteration of chromatin substructure for both cap-D mutants. Chromosome-associated polypeptide (CAP)-D3 and the cohesin subunit SMC3 form similar but positionally non-overlapping reticulate structures in 2C-16C nuclei, suggesting their importance for interphase chromatin architecture in differentiated nuclei. Thus, we presume that CAP-D proteins are required for fertility, growth, chromatin organisation, sister chromatid cohesion and in a process preventing the association of centromeric repeats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.