Abstract

The stability and stoichiometry of Nd (III) chloride complexes have been experimentally determined in the temperature range 40 to 300°C, P = Psat. The solubility of AgCl (s) was measured in solutions of fixed HC1 + NaC1 concentration (0.01 to 5.0 m) and varying ΣNd/ΣCl molar ratio (0.0 to 0.5), following the method of Gammons (1995). The results of over 250 individual solubility experiments were regressed to obtain the following smoothed values for the first and second cumulative association constants for the Nd(III) chloride complexes: Nd3+ + Cl− = NdC12+ (β1); Nd3+ + 2Cl− = NdCl2+ (β2):25°C50°C100°C150°C200°C250°C300°log β10.060.210.661.312.173.224.48±.50±.30±.20±.20±.15±.30±.50log β2——0.131.082.524.456.87±.50±.30±.15±.50c]±.50These are the first experimentally determined equilibrium constants for chloride complexes of any rare earth element (REE) at elevated temperature. At 25°C, neodymium exists mainly as Nd3+ in the absence of high concentrations of Cl− and other ligands (F−, CO3−, SO4−). However, complexation with chloride is greatly enhanced by increase in temperature, such that NdC12+, NdC12+, and possibly NdCl30 become the dominant species for NaClHClH2O brines at 300°C. The experimental data indicate a higher degree of complexation than predicted from earlier theoretical studies (Wood, 1990b; Haas et al., 1995), particularly in the case of log β2.Calculations of monazite solubility in seafloor hydrothermal systems (Wood and Williams-Jones, 1994) are re-evaluated in light of our new experimental data. Chloride complexes are shown to dominate the aqueous Nd socciation at 300°C, and lead to solubilities that are (1) much higher than previously estimated and (2) much closer to the maximum concentrations that have been reported from active black smokers. However, the large fluxes of REEs in altered rock beneath ancient massive sulfide deposits are still difficult to explain assuming that modern seafloor hydrothermal systems are direct analogs to ore-forming processes. Significant differences in fluid chemistry (e.g., lower pH, higher Cl− or F− concentrations) and/or duration and intensity of hydrothermal activity (higher water/rock ratio) are required to explain the REE systematics in ancient volcanogenic massive sulfide deposits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.