Abstract
More and more studies have shown Angelica sinensis' (AS) therapeutic action on chronic inflammatory diseases in recent years. We investigated effects of aqueous extract of AS on inflammatory cytokines release and wear debris particles-induced osteolysis. Ultra high molecular weight polyethylene (UHMWPE) particles were used to induce inflammation in RAW264.7 cell and C57BL/J6 mice. AS extract was obtained through a series of purification steps, and divided into high dose group and low dose group during the research of cell culture, tissue culture, and animal treatment. After 72 h culture with optimal particles, supernatants were collected for cytokine analysis. Calvaria were harvested from the mice model after 10 d treatment with the AS extract. Six calvaria of each group were cultured into medium for 72 h for analyzing cytokine generated in vivo. Histologic analyses and micro-computed tomography (micro-CT) scan were used to determine osteoclastogenesis and inflammatory bone resorption. Concentration of tumor necrosis-alpha (TNF-α) and interleukin-1beta (IL-1β) was significantly attenuated by AS extract both in vitro and in vivo. The osteolysis area and the osteoclast numbers were decreased from 0.406 ± 0.0799 to 0.117 ± 0.0103 mm(2), and from 22.7 ± 5.0 to 11.3 ± 1.8, respectively (P < 0.01). Compared with the control group, the protection effects of AS extract was further confirmed with data of the more accurate 3-dimension micro-CT reconstruction. This study suggests a potential resolution of inhibiting wear debris particles-induced inflammatory bone resorption, as well as a possible way of inhibiting aseptic loosening after joint replacement surgery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.