Abstract

Herein, we report on the structure and dynamics of the aqueous Ca(2+) system studied by using ab initio molecular dynamics (AIMD) simulations. Our detailed study revealed the formation of well-formed hydration shells with characteristics that were significantly different to those of bulk water. To facilitate a robust comparison with state-of-the-art X-ray absorption fine structure (XAFS) data, we employ a 1st principles MD-XAFS procedure and directly compare simulated and experimental XAFS spectra. A comparison of the data for the aqueous Ca(2+) system with those of the recently reported Zn(2+), Fe(3+), and Al(3+) species showed that many of their structural characteristics correlated well with charge density on the cation. Some very important exceptions were found, which indicated a strong sensitivity of the solvent structure towards the cation's valence electronic structure. Average dipole moments for the 2nd shell of all cations were suppressed relative to bulk water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call