Abstract

Certain types of singular solutions of nonlinear parameter-dependent operator equations were characterized by Griewank and Reddien [5, 6] as regular solutions of suitable augmented systems. For their numerical approximation an approach based on the use of Krylov subspaces is here presented. The application to boundary value problems is illustrated by numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.