Abstract

Abstract In this paper, a class of time-delay fractional optimal control problems (TDFOCPs) is studied. Delays may appear in state or control (or both) functions. By an embedding process and using conformable fractional derivative as a new definition of fractional derivative and integral, the class of admissible pair (state, control) is replaced by a class of positive Radon measures. The optimization problem found in measure space is then approximated by a linear programming problem (LPP). The optimal measure which is representing optimal pair is approximated by the solution of a LPP. In this paper, we have shown that the embedding method (embedding the admissible set into a subset of measures), successfully can be applied to non-linear TDFOCPs. The usefulness of the used idea in this paper is that the method is not iterative, quite straightforward and can be applied to non-linear dynamical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.