Abstract

In a series of four papers we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $\alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(\frac12+\alpha)n$ vertices of degree at least $(1+\alpha)k$ contains each tree $T$ of order $k$ as a subgraph. The method to prove our result follows a strategy similar to approaches that employ the Szemer\'edi regularity lemma: we decompose the graph $G$, find a suitable combinatorial structure inside the decomposition, and then embed the tree $T$ into $G$ using this structure. Since for sparse graphs $G$, the decomposition given by the regularity lemma is not helpful, we use a more general decomposition technique. We show that each graph can be decomposed into vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. In this paper, we introduce this novel decomposition technique. In the three follow-up papers, we find a combinatorial structure suitable inside the decomposition, which we then use for embedding the tree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.