Abstract

The dense molecular cloud cores that form stars, like other self-gravitating objects, undergo bulk oscillations. Just at the point of gravitational instability, their fundamental oscillation mode has zero frequency. We study, using perturbation theory, the evolution of a spherical cloud that possesses such a frozen mode. We find that the cloud undergoes a prolonged epoch of subsonic, accelerating contraction. This slow contraction occurs whether the cloud is initially inflated or compressed by the oscillation. The subsonic motion described here could underlie the spectral infall signature observed in many starless dense cores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call