Abstract
We describe a mechanically checked proof of a property of a small system of Java programs involving an unbounded number of threads and synchronization, via monitors. We adopt the output of the javac compiler as the semantics and verify the system at the bytecode level under an operational semantics for the JVM. We assume a sequentially consistent memory model and atomicity at the bytecode level. Our operational semantics is expressed in ACL2, a Lisp-based logic of recursive functions. Our proofs are checked with the ACL2 theorem prover. The proof involves reasoning about arithmetic; infinite loops; the creation and modification of instance objects in the heap, including threads; the inheritance of fields from superclasses; pointer chasing and smashing; the invocation of instance methods (and the concomitant dynamic method resolution); use of the start method on thread objects; the use of monitors to attain synchronization between threads; and consideration of all possible interleavings (at the bytecode level) over an unbounded number of threads. Readers familiar with monitor-based proofs of mutual exclusion will recognize our proof as fairly classical. The novelty here comes from (i) the complexity of the individual operations on the abstract machine; (ii) the dependencies between Java threads, heap objects, and synchronization; (iii) the bytecode-level interleaving; (iv) the unbounded number of threads; (v) the presence in the heap of incompletely initialized threads and other objects; and (vi) the proof engineering permitting automatic mechanical verification of code-level theorems. We discuss these issues. The problem posed here is also put forth as a benchmark against which to measure other approaches to formally proving properties of multithreaded Java programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Programming Languages and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.