Abstract

AbstractMetal−organic frameworks (MOFs), synthesized by assembling metal nods with organic linkers, are highly ordered crystalline materials. MOFs have attracted much attention for applications in electrochemical sensors, because of their unique chemical and physical properties including ultrahigh porosity, large surface area, tunable structure, and high thermal and chemical stability. In particular, redox and catalytic active sites introduced by use of active metal ions and/or ligands endow MOFs with the functions required in electrochemical sensing. Moreover, precise chemical modification of functional molecules and immobilization with metal nanoparticles, carbon nanostructures, and biomolecules could promote their electrochemical performances. In this Review, we focus on recent progress achieved in MOF research with respect to general sensing principles and analytical performances of electrochemical sensors. The evaluation and challenges governing the detection of the assays are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call