Abstract
Portfolio selection is one of the most vital financial problems in literature. The studied problem is a nonlinear multi-objective problem which has been solved by a variety of heuristic and metaheuristic techniques. In this article, a metaheuristic optimiser, the multi-objective water cycle algorithm (MOWCA), is represented to find efficient frontiers associated with the standard mean-variance (M-V) portfolio optimisation model. The inspired concept of WCA is based on the simulation of water cycle process in the nature. Computational results are obtained for analyses of daily data for the period January 2012 to December 2014, including S&P100 in the US, Hang Seng in Hong Kong, FTSE100 in the UK, and DAX100 in Germany. The performance of the MOWCA for solving portfolio optimisation problems has been evaluated in comparison with other multi-objective optimisers including the NSGA-II and multi-objective particle swarm optimisation (MOPSO). Four well-known performance metrics are used to compare the reported optimisers. Statistical optimisation results indicate that the applied MOWCA is an efficient and practical optimiser compared with the other methods for handling portfolio optimisation problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.