Abstract

Biofouling is problematic for the shipping industry and can lead to functional and financial setbacks. One possible means of biofouling prevention is the use of ultraviolet-C (UVC) light. Previous studies have investigated UVC with marine coatings, but the synergistic effect with color and surface material, specifically reflectance, has yet to be determined. This study comprised three parts: UVC and color (red vs. white), UVC and reflectance (stainless steel vs. polycarbonate), and UVC and exposure intervals (weekly intervals and 10 min intervals). There was no variance in the biofouling communities for colored surfaces when exposed to 254 nm UVC. Reflectance studies demonstrated that the surface material plays a role in biofouling settlement. Stainless steel panels had significantly greater macrofouling settlement than polycarbonate, specifically among encrusting bryozoan, tubeworms, and tunicate communities. Panels of both surface materials exposed to indirect UVC significantly differed from controls and those exposed directly to UVC. Exposure intervals were also found to reduce biofouling settlement especially with long frequent intervals (i.e., 10 min/day). UVC can be utilized on various colored surfaces and different surface types, but the effectiveness in preventing biofouling is ultimately determined by the duration and frequency of UVC exposure.

Highlights

  • Biofouling is a significant problem for the shipping industry as it leads to many functional and financial setbacks

  • The synergistic effect of color and UVC exposure on biofouling was assessed using panels immersed in Box 1 compared to control panels

  • There was a statistical difference in tubeworm settlement between the two colors (p < 0.05), with red having an average of 7% and white having an average of 3% tubeworm abundance

Read more

Summary

Introduction

Biofouling is a significant problem for the shipping industry as it leads to many functional and financial setbacks. A surface, such as a ship hull, accumulates a conditioning film, followed by bacteria and other unicellular organisms (i.e., diatoms). This accumulation is known as slime or microfouling [1]. Within hours to days, macrofouling communities such as barnacles, sponges, and tunicates may begin to grow, creating a complex biofouling community. This accumulation causes changes in surface roughness that lead to increased drag, lower fuel efficiency, and increased greenhouse gas emissions [2]. Biofouling can damage oceanographic equipment and is a known vector for the transfer of invasive species [3,4,5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call