Abstract

Three approximate free energy calculation methods are examined and applied to an example ligand design problem. The first of the methods uses a single simulation to estimate the relative binding free energies for related ligands that are not simulated. The second method is similar, except that it uses only first derivatives of free energy with respect to atomic parameters (most often charge, van der Waals equilibrium distance, and van der Waals well depth) to calculate free energy differences. The last method PROFEC (Pictorial Representation of Free Energy Components), generates contour maps that show how binding free energy changes when additional particles are added near the ligand. These three methods are applied to a benzamidine/trypsin complex. They each reproduce the general trends in the binding free energies, indicating that they might be useful for suggesting how ligands could be modified to improve binding and, consequently, useful in structure-based drug design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call